Guillaume Wang

Lausanne, Switzerland • +33 6 95 86 65 87 • guillaume.wang@epfl.ch • guillaumew16.github.io

RESEARCH INTERESTS

- **Theory for machine learning**: understanding the dynamics, optimization landscape, and generalization abilities of learning algorithms.
- Convex and nonconvex optimization.
- Optimal transport theory and applications to analysis of particle methods and sampling.

EDUCATION

2021 - present EPFL , Switzerland	PhD in Mathematics advised by Prof. Lénaïc Chizat Overall GPA: 5.71 (max: 6, min: 1) via 12 credits Thesis: Particle methods for optimization over the space of measures
2019 - 2021 ETH Zurich, Switzerland	M.Sc. in Computer Science Overall GPA: 5.80 (max: 6, min: 1) via 114 credits Selected courses: Guarantees for Machine Learning; Probabilistic Artificial Intelligence; Statistical Learning Theory; Neural Network Theory; Algorithms Lab
2016 - 2019 École polytechnique, France	Cycle Ingénieur polytechnicien Overall GPA: 3.87 out of 4 via 166 credits 3 rd year track: Computer Systems Design

RESEARCH EXPERIENCE

Oct. 2021 -	PhD research, EPFL
present	Dynamics of Learning Algorithms chair, Prof. Lénaïc Chizat
	 Analyzing particle-based algorithms for optimization over probability or signed measures, through the lens of Wasserstein gradient flows. Examples of amenable settings: gradient descent for 2-layer neural networks; (mean-field) Langevin dynamics for sampling (or entropy-regularized optimization with noisy gradients). Leveraging the Wasserstein Fisher-Rao geometry, from unbalanced optimal transport, for optimization. Example: particle gradient dynamics with weight updates for mixed Nash equilibria. Sharpening the analogy between differential or Riemannian manifolds and the manifold of probability measures equipped with the transport geometry. Analyzing min-max and accelerated optimization dynamics.
Apr. 2021 -	Research internship, ETH Zurich
Sep. 2021	Statistical Machine Learning group, Prof. Fanny Yang
	 Defined the "in-principle" inductive bias of overparametrized models; computed it for deep linear networks; showed it is non-convex for deep ReLU networks. Analyzed the statistical behavior of min-l₁-norm interpolation for linear regression on noisy data. Surprisingly, it is asymptotically consistent. Results published at AISTATS 2022.
Sep. 2020 -	Master's Thesis project, ETH Zurich
Mar. 2021	Chair for Mathematical Information Science, Prof. Helmut Bölcskei
	Entropy numbers of nonlinear systems
	Report: bit.ly/4harAX5 Slides: bit.ly/4eMEsBg

Summer
2019Short research internship, Cornell University
School of Civil and Environmental Engineering, Prof. Samitha Samaranayake
Optimizing Commuter Welfare with Subsidies in Multimodal Transportation
Report: bit.ly/360jW1E
Slides: bit.ly/3hUu0g4

PUBLICATIONS

- [6] Wang, G. (2024). "A Higher-Order Otto Calculus Approach to the Gaussian Completely Monotone Conjecture". arXiv preprint.
- [5] Wang, G.*, Mousavi-Hosseini, A.*, & Chizat, L. (2024). "Mean-Field Langevin Dynamics for Signed Measures via a Bilevel Approach". *To appear as NeurIPS 2024 spotlight.*
- [4] Wang, G., & Chizat, L. (2024). "Open Problem: Convergence of Single-Timescale Mean-Field Langevin Descent-Ascent for Two-Player Zero-Sum Games". COLT 2024 open problems.
- [3] Wang, G., & Chizat, L. (2023). "Local Convergence of Gradient Methods for Min-Max Games under Partial Curvature". NeurIPS 2023.
- [2] Wang, G., & Chizat, L. (2022). "An Exponentially Converging Particle Method for the Mixed Nash Equilibrium of Continuous Games". arXiv preprint, to appear in Open Journal of Mathematical Optimization.
- [1] Wang, G.*, Donhauser, K.*, & Yang, F. (2022). "Tight Bounds for Minimum ℓ_1 -Norm Interpolation of Noisy Data". AISTATS 2022.

*: equal contribution

SKILLS

Programming: Python and Julia (proficient). Experience in Java, C, C++, Caml.

Languages: French, Chinese (native); English (fluent); German (conversational).

LEADERSHIP & SERVICE

- Organizing an informal reading group on continuous optimization at EPFL since 2021.
 - Sample topics: stable manifold theorem; hypocoercivity; Schur-Horn and convexity theorems; Γ-calculus for diffusion processes.
- Head teaching assistant at EPFL for
 - Bachelor-level Analysis courses in Spring 2022, Fall 2022, Spring 2024, Fall 2024.
 - Master-level "Numerical Integration of SDEs" in Spring 2023.
- Reviewer for Journal of Machine Learning Research; Mathematics of Operations Research; Optimal Transport and Machine Learning workshop (NeurIPS 2023); NeurIPS 2024; ICLR 2025; AISTATS 2025.
- Webmaster of EPFL **SIAM student chapter** (Society for Industrial and Applied Mathematics) since 2022. siam.epfl.ch
- Board member of Ecole polytechnique's computer network student association, Binet Réseau, 2017-2018. Co-organized a task force dedicated to "Sigma", a multi-year development project to replace the old student website. Took part in full-stack web development and infrastructure design. Sigma is a groupand event-based social network, written in Node.js, React.js, and using GraphQL. sigma.binets.fr
- A blog about basic but interesting things encountered in my research: guillaumew16.github.io/blog

REFERENCES