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Among the topics that I’ve been interested in during the last few months, many required some
knowledge of convex analysis: regularization in linear models, primal-dual views on optimization,
representer theorems in reproducing kernel Banach spaces... Moreover the finite-dimensional setting
doesn’t suffice, a more abstract point of view is necessary or at least useful; namely Banach spaces
seem to be the appropriate level of abstraction for those topics.

In this document I compile some relevant functional and convex analysis background, in the form
of a cheat sheet. It is not at all meant to be exhaustive, I only included basic facts and tricks that I
found interesting. I may add to it in the future.

1 Functional analysis (Banach duality) cheat sheet
Beyond finite dimension, Banach spaces are a simple and natural level of abstraction for discussing
convex analysis. This section is mostly extracted from the appendix of my Master’s thesis.

Definition 1.1 (Banach space). A metric space (E, d) is called complete if all Cauchy sequences
(un)n ∈ EN converge in E.

A Banach space (E, ‖·‖E) is a vector space equipped with a norm for which it is a complete space.
A Hilbert space (H, 〈·, ·〉H) is a vector space equipped with an inner product that is complete for

the induced norm ‖x‖2
H = 〈x, x〉H .

The unit ball of a normed space (E, ‖·‖E) is denoted B(E) = B
(E)
0,1 := {x ∈ E; ‖x‖E ≤ 1}.

A continuous linear mapping T : E → F between Banach spaces is called a bounded operator, and
its operator norm is the finite quantity |||T ||| = |||T |||E→F := sup‖x‖E≤1 ‖Tx‖F . The set of bounded
operators from E to F equipped with the operator norm (Lb(E,F ), |||·|||) is itself a Banach space.

A bounded operator T : E → F is called compact if it sends the unit ball into a relatively compact
set, i.e T (B(E)) is a relatively compact set of F , i.e T (B(E)) is compact where · denotes closure w.r.t
the norm of F .

1.1 Duality in Banach spaces
Definition 1.2 (Dual space). The (topological) dual of a Banach space E is the space of bounded
linear forms E′ = Lb(E,R). It is equipped with the norm ‖X‖E′ := sup‖x‖E≤1 |X(x)|. E′ is itself a
Banach space.

The duality bracket of E is the bilinear operator 〈·, ·〉E : E × E′ → R defined by 〈x,X〉E = X(x).

1



The bidual of E is the space E′′ = (E′)′. E can be embedded into E′′ by x 7→ x′′, where x′′ is
defined by: ∀X ∈ E′, 〈X,x′′〉E′ = 〈x,X〉E = X(x). It is not hard to show (using existence of norming
functionals, see below) that this embedding is isometric i.e ‖x‖(E′)′ = ‖x‖E .

E is called a reflexive Banach space if the converse holds, i.e if any element of the bidual can also
be seen as an element of the primal, i.e if E′′ ' E.

In this section, elements of the primal space will typically be denoted by lowercase letters e.g
x ∈ E, y ∈ F , and elements of the dual by uppercase letters e.g X ∈ E′, Y ∈ F ′.
Remark 1.1. The duality bracket is very similar to the physicists’ bra-ket notation; except that here
the primal is on the left and the dual is on the right, instead of the opposite.

When E is reflexive, then all the shorthands from the bra-ket notation can be used. That is, a dual
element X can be denoted without ambiguity as 〈·, X〉E , and a primal element x = x′′ as 〈x, ·〉E .
Moreover, for a bounded operator T : E → F , we can write without ambiguity 〈Tx, Y 〉F = 〈x|T |Y 〉 .
However since there are many interesting Banach spaces that are not reflexive, we will not use such
shorthands.

1.2 Hahn-Banach theorem and useful consequences
Theorem 1.1 (Hahn-Banach theorem). Let E be a linear subspace of a normed vector space (E, ‖·‖)
and let f : E → R be a bounded linear form on (E, ‖·‖).

Then there exists g : E → R a bounded linear form on all of E, such that

• g is an extension of f : g|E = f ;
• The extension “comes to no cost” in operator norm: |||g||| = |||f |||.

(Here the operator norms are with respect to their respective domains: |||f ||| = supx∈E;‖x‖≤1 |f(x)|,
|||g||| = supx∈E;‖x‖≤1 |g(x)|.)

As one of the many important consequences of that theorem, we have the existence of norming
functionals.

Definition 1.3 (Norming functional). Let E be a Banach space.
For all x ∈ E \ {0E}, there exists X ∈ E′ such that X(x) = 〈x,X〉E = ‖x‖E and ‖X‖E′ = 1. X is

then called a norming functional of x.
By convention, any X ∈ B(E′) will be called a norming functional of 0E .

Importantly, the norming functional X is not unique in general, and there is no generic way to
construct it – the proof is not constructive.1 (This stands in contrast with the case of Hilbert spaces,
where the norming functional is unique and given by the Riesz representation theorem.)

Proposition 1.2. The primal E injects isometrically into the bidual E′′.

Proof. To any x ∈ E, associate x′′ ∈ E′′ defined by ∀X ∈ E′, 〈X,x′′〉E′ = 〈x,X〉E .
To show that this linear mapping is injective, let x ∈ E such that x′′ = 0E′′ , i.e 〈x,X〉E = 0 for

all X ∈ E′. Then x = 0E ; indeed otherwise we obtain a contradiction by taking X to be a norming
functional of x.

To show that this mapping is isometric, let x ∈ E and let us show that ‖x′′‖E′′ := sup‖X‖E′≤1 〈x,X〉E
is equal to ‖x‖E .

1Or rather, to the pure functional analyst there is no satisfying way to construct a norming functional, but to the
convex analyst there is... See below.
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• For all X ∈ E′ such that ‖X‖E′ ≤ 1, it holds 〈x,X〉E ≤ ‖x‖E , so taking the sup over X yields
‖x′′‖E′′ ≤ ‖x‖E .

• Let X a norming functional of x. Then ‖x′′‖E′′ ≥ 〈x,X〉E = ‖x‖E .

Another important consequence of the Hahn-Banach theorem is the following density criterion.

Lemma 1.3 (Hahn-Banach density criterion). Let E be a Banach space. Let E be any subspace and
A any subset.

E is dense in E ⇐⇒ E⊥ := {X ∈ E′; ∀x ∈ E, 〈x,X〉E = 0} = {0E′} (1.1)
span(A) is dense in E ⇐⇒ A⊥ := {X ∈ E′; ∀a ∈ A, 〈a,X〉E = 0} = {0E′} (1.2)

The set A⊥ is called the annihilator of A. Note that A⊥ = (span(A))⊥. In the case where E is a
Euclidean space, A⊥ is just (up to isometry) the orthogonal complement of span(A).

Proof. The direct implication is trivial.
For the other direction, suppose to the contrary that E is not dense in E, and let x0 ∈ E \ E. By

definition there exists δ > 0 such that ‖x− x0‖ ≥ δ for all x ∈ E. Now the mapping

f :
[
E + Rx0 → R
x+ λx0 7→ λ

]
(1.3)

is well-defined, and one can check that it is a bounded linear form with norm at most 1/δ.
Now let g an extension of f to all of E, by Hahn-Banach theorem. Then g contradicts the condition

on the right-hand-side.
The second part of the lemma follows from the first by noting that A⊥ = (span(A))⊥.

2 Convex analysis (convex duality) cheat sheet
For the rest of this subsection, fix a Banach space E.

Definition 2.1. A function f : E → R ∪ {+∞} is called convex if

∀x, y ∈ E,∀t ∈ [0, 1], f (tx+ (1− t)y) ≤ tf(x) + (1− t)f(y). (2.1)

For any convex f : E → R ∪ {+∞},

• The domain of f is the convex set dom(f) = {x ∈ E; f(x) <∞}. f is called proper if dom(f) 6= ∅.

• f is called lower-semicontinuous (l.s.c) if its sub-level sets are closed, i.e for each c ∈ R,
{x ∈ E; f(x) > c} is an open set.

Denote Γ(E) the set of proper l.s.c convex functions over E.
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Definition 2.2. For any proper convex function f : E → R ∪ {+∞},

• The subdifferential of f at a point x0 ∈ E is the set

∂f(x0) = {X ∈ E′;∀x ∈ E, f(x) ≥ f(x0) + 〈x− x0, X〉E} . (2.2)

f is called subdifferentiable at x0 if ∂f(x0) 6= ∅. Note that f can be subdifferentiable at x0 only
if x0 ∈ dom(f).

• f is called differentiable at x0 if ∂f(x0) is a singleton. Its unique element is then called the
differential of f at x0 and denoted Df(x0) or ∇f(x0).

Note that the definitions of “subdifferential” and “differential” above look different from the usual
ones, since they only apply to convex functions. It can be shown that our definitions are compatible
with the usual ones from real analysis.2

Proposition 2.1. For any proper l.s.c function f : E → R ∪ {+∞} such that dom(f) is open,

• f is convex iff dom(f) is convex and ∂f(x0) 6= ∅ for all x0 ∈ dom(f).

• If f is convex, then it is differentiable at x0 (in the usual real-analytic sense) iff ∂f(x0) is a
singleton, and the differential of f at x0 (in the usual real-analytic sense) is then Df(x0).

2.1 Convex conjugate
Definition 2.3. For any proper function f : E → R ∪ {+∞}, the convex conjugate of f (a.k.a
Fenchel-Legendre a.k.a Legendre-Fenchel a.k.a Fenchel a.k.a Legendre transform) is the function

f∗ :
[
E′ → R ∪ {+∞}, X 7→ sup

x∈E
〈x,X〉E − f(x)

]
. (2.3)

Proposition 2.2 (Fenchel-Moreau theorem). For any proper function f , f∗ is a proper l.s.c convex
function.

A function f is a proper l.s.c convex function iff f∗∗ = f .

For any proper function f , f∗∗ is the tightest convex relaxation of f , in the sense that the epigraph
of f∗∗ is the convex hull of the epigraph of f . This is easy to visualize for functions over the real line.
Remark 2.1. In the proposition above, f∗∗ is understood as a mapping from E to R. Looking at the
definitions, it would be more natural to view f∗∗ as a mapping from E′′ to R instead, which would be
more general since E injects isometrically into E′′. However in convex analysis we typically don’t care
about what happens outside of E.

More precisely: to be completely general and consistent with notation, we could define f∗∗ = (f∗)∗
over E′′ by

∀z ∈ E′′, f∗∗(z) = sup
X∈E′

〈X, z〉E′ − f
∗(X). (2.4)

Since 〈X,x′′〉E′ = 〈x,X〉E (where [E → E′′, x 7→ x′′] denotes the canonical injection), the restriction
of f∗∗ to E is then – and this equation is typically taken as the definition of f∗∗:

∀x ∈ E, f∗∗(x) = sup
X∈E′

〈x,X〉E − f
∗(X). (2.5)

2In other words, in this document we are only concerned with content covered in Rockafellar’s 1970 “Convex Analysis”
book, whereas in other contexts Rockafellar’s 1998 “Variational Analysis” book may be a better reference.
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Remark 2.2. In the context of convex analysis it is common to denote adjoint/conjugate/dual objects
with a superscript "∗". In other contexts that symbol connotes involution, which may be misleading.
However for convex analysis there is not much risk of mistake, precisely because of the previous remark:
we only ever care about what happens in E and E′, never about the bidual space E′′. In particular,
even if f is not a proper l.s.c function, we may always write (f∗∗)∗ = f∗.

Accordingly, from here on we will follow the common practice and use x∗ (instead of X) to denote
a generic element of E′.

Many of the useful properties of convex conjugates can be found here: https://en.wikipedia.org/w/
index.php?title=Convex_conjugate&oldid=1007941296.

2.2 Convex conjugates vs. subdifferentials
Proposition 2.3 (Fenchel-Young inequality). Let f ∈ Γ(E). By definition of the convex conjugate,
we have Fenchel-Young’s inequality:

∀x ∈ E,∀x∗ ∈ E′, f(x) + f∗(x∗) ≥ 〈x, x∗〉E . (2.6)

For x ∈ E and x∗ ∈ E′,

• x∗ ∈ ∂f(x) iff x∗ saturates Fenchel-Young’s inequality, iff x∗ achieves the sup in the definition of
f(x) = f∗∗(x) = supx∗∈E′ 〈x, x∗〉E − f∗(x∗).

• x ∈ ∂f∗(x∗) iff x saturates Fenchel-Young’s inequality, iff x achieves the sup in the definition of
f∗(x∗) = supx∈E 〈x, x∗〉E − f(x).

• x∗ ∈ ∂f(x) iff x ∈ ∂f∗(x∗).

Remark 2.3 (Subdifferentials as correspondence). (Rockafellar 1970, Theorem 24.9) Up to an additive
constant, f ∈ Γ(E) is characterized by the binary relation R given by

xRx∗ ⇐⇒ f(x) + f∗(x∗) = 〈x, x∗〉E . (2.7)

Proposition 2.4 (Norming functionals as subdifferentials). The norm ‖·‖E is a proper continuous
convex function by definition.

For any x ∈ E, x∗ ∈ E′ is a norming functional for x iff x∗ ∈ ∂ ‖·‖E (x). In symbols,

x∗ ∈ ∂ ‖·‖E (x) ⇐⇒
{
‖x∗‖E′ = 1
〈x, x∗〉 = ‖x‖E

(2.8)

In particular, ‖·‖E is differentiable at x iff ∂ ‖·‖E (x) is a singleton, iff x has a unique norming
functional. If ‖·‖E is differentiable everywhere, then the mapping [x 7→ ∇‖·‖E (x)] is well-defined and
is called the duality mapping.

Thus, to the convex analyst, norming functionals are not a magical byproduct of the Hahn-Banach
theorem, but simply a subgradient of the norm.3

3This explains why many papers on RKBSs make the assumption that the Banach space considered has a (Gateaux)
differentiable norm: it ensures that the duality mapping is well-defined (single-valued), and gives an explicit way to
compute it
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2.3 Convex conjugacy swaps strict convexity for differentiability, and strong
convexity for smoothness

Definition 2.4. Let f ∈ Γ(E) and let µ > 0, L > 0.
f is strictly convex if for all x0 ∈ dom(f), there exists g ∈ ∂f(x0) such that the strict inequalities

hold:
∀x ∈ E \ {x0}, f(x) > f(x0) + 〈x− x0, g〉E . (2.9)

f is µ-strongly convex if for all x0 ∈ dom(f), there exists g ∈ ∂f(x0) such that4

∀x ∈ E, f(x) ≥ f(x0) + 〈x− x0, g〉E + µ

2 ‖x− x0‖2
E . (2.10)

f is differentiable everywhere if it is differentiable at each point of its domain, that is, if for all
x0 ∈ dom(f), there exists a unique g ∈ E′ such that

∀x ∈ E, f(x) ≤ f(x0) + 〈x− x0, g〉E . (2.11)

f is L-smooth if for all x0 ∈ dom(f), there exists g ∈ ∂f(x0) such that

∀x ∈ E, f(x) ≤ f(x0) + 〈x− x0, g〉E + L

2 ‖x− x0‖2
E . (2.12)

Note that µ-strong convexity implies strict convexity, and that L-smoothness implies differentia-
bility everywhere.

Proposition 2.5 (Kakade, Shalev-Shwartz, and Tewari, 2009). Let f ∈ Γ(E).
f is strictly convex iff f∗ is differentiable.
f is µ-strongly convex iff f∗ is 1/µ-smooth.

A Bonus functional analysis stuff
A.1 Canonical isometry between operators and bilinear forms
Definition A.1 (Dual operator). For a bounded operator T : E → F between Banach spaces, its dual
(a.k.a adjoint) operator5 is T ′ : F ′ → E′ defined by ∀Y ∈ F ′, T ′Y : x 7→ 〈Tx, Y 〉F . In other words,

∀(x, Y ) ∈ E × F ′, 〈Tx, Y 〉F = 〈x, T ′Y 〉E (A.1)

Proposition A.1 (Specifying an operator by its action on the dual of the codomain). To a bounded
operator T : E → F , associate the bilinear form

BT : [(E × F ′)→ R, (x, Y ) 7→ 〈Tx, Y 〉F = 〈x, T ′Y 〉E ] . (A.2)

Let Bb(E × F ′) denote the space of continuous bilinear forms over E × F ′, equipped with the norm

|||B|||E×F ′ = sup
‖x‖E≤1

sup
‖Y ‖F ′≤1

|B(x, Y )| . (A.3)

4See also https://xingyuzhou.org/blog/notes/strong-convexity.
5Personally I prefer the term “dual operator”, as it allows to stress that the bidual operator T ′′ is not the same as

the primal in general; while the term “adjoint” connotes involution, which can be misleading here.
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Then
[

(Lb(E,F ), |||·|||E→F )→ (Bb(E × F ′), |||·|||E×F ′)
T 7→ BT

]
is an injective isometric linear map between

Banach spaces. It is bijective if F ′′ = F .

In words, any operator T : E → F is fully characterized by the action of Tx on F ′ for each x ∈ E,
i.e by the bilinear form BT . Furthermore, BT is continuous with |||BT |||E×F ′ = |||T |||E→F . However an
arbitrary bilinear form B ∈ Bb(E × F ′) may not induce an operator T : E → F in general.

Proof. Everything is trivial, except perhaps for the completeness of (Bb(E×F ′), |||·|||E×F ′), for which we
refer to https://math.stackexchange.com/questions/185103/completeness-of-the-space-of-bounded-bilinear-maps.

For injectiveness and isometry, use the existence of norming functionals (Hahn-Banach theorem).
For surjectiveness when F is reflexive, notice that anyB ∈ Bb(E × F ′) defines an operator T : E → F ′′

by ∀Y ∈ F ′, 〈Y, Tx〉F ′ = B(x, Y ).

Proposition A.2 (Specifying an operator by its action on a predual of the codomain). Suppose that
there exists a Banach F̃ such that F = (F̃ )′, i.e F̃ is a predual space of F .

To a bounded operator T : E → F , associate the bilinear form

B̃T :
[
E × F̃ → R, (x, z) 7→ 〈z, Tx〉

F̃

]
. (A.4)

Let Bb(E × F̃ ) denote the space of continuous bilinear forms over E × F̃ , equipped with the norm∣∣∣∣∣∣∣∣∣B̃∣∣∣∣∣∣∣∣∣
E×F̃

defined similarly as in the previous proposition.

Then
[

(Lb(E,F ), |||·|||E→F )→ (Bb(E × F̃ ), |||·|||
E×F̃ )

T 7→ B̃T

]
is an isometric isomorphism between Banach

spaces.

In words, compared to the previous proposition: any operator T : E → F is also fully characterized
by the action of Tx on F̃ for each x ∈ E, i.e by B̃T ; and F̃ is “small enough” so that conversely, any
arbitrary bilinear form B̃ ∈ BB(E × F̃ ) induces an operator T : E → F .
Remark A.1. Not all Banach spaces have a predual space. See e.g https://math.stackexchange.com/
questions/137677/what-is-the-predual-of-l1.

B Bonus convex analysis stuff
B.1 Bregman divergence
Definition B.1. Let ψ ∈ Γ(E) strictly convex and differentiable everywhere, i.e dom(ψ) = E and ∂ψ
and ∂ψ∗ are both single-valued. The Bregman divergence with respect to ψ is defined as

Dψ(x, y) = ψ(x)− ψ(y)− 〈x− y,∇ψ(y)〉 = ψ(x)− [Linearizeyψ] (x) (B.1)

Remark B.1. A possible interpretation: note that

ψ∗(x∗) = sup
t∈R

t s.t ∀x ∈ E,ψ(x) ≤ 〈x, x∗〉 − t (B.2)
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and that

Dψ(x, y) = ψ(x) + ψ∗(y∗)− 〈x, y∗〉 = ψ(x) + (ψ(· − x))∗ (y∗) (B.3)
Dψ∗(x∗, y∗) = ψ∗(x∗) + ψ(y)− 〈y, x∗〉 = ψ∗(x) + (ψ∗(· − x∗))∗ (y) (B.4)

where y∗ = ∇ψ(y) i.e y = ∇ψ∗(y∗).

Figure 1: Bregman divergence

Proposition B.1. Let ψ ∈ Γ(E) strictly convex and differentiable everywhere, and let any w0 ∈ E.
Denote ϕ = Dψ(·, w0). Note that ϕ ∈ Γ(E) and is strictly convex and differentiable everywhere.

Then for any w,w′ ∈ E, Dϕ(w,w′) = Dψ(w,w′) independent of w0.

B.2 Proximal operator
In this subsection, let E be a Hilbert space, which is a Banach space for which the dual is isometrically
isomorphic to the primal.

Definition B.2. For any convex f : E → R, define the proximal operator proxf : E → E as

∀x ∈ E,proxf (x) = arg min
u∈E

f(u) + ‖u− x‖
2

2 (B.5)

Note that the function appearing in the arg min is 1-strongly convex in u so that the arg min is indeed
unique.

The proximal operator has nice properties, is computable in closed form for a number of interesting
choices of f , and is used in many optimization algorithms; see https://en.wikipedia.org/w/index.php?
title=Proximal_gradient_methods_for_learning&oldid=1028229614.
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