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During my Master’s thesis, I encountered several interesting technical points that were not directly
related to the thesis topic, so that I left them hanging. Here I will talk about one of them, encountered
while working on Volterra series. (I chose to jump directly into my main point without giving any
context on Volterra series, as it is not necessary; for a clean introduction to these objects, see chapter
4 of my Master’s thesis report.)

1 Preliminaries
Notations and shorthands Fix some integer n > 0.

• For a point t = (t1, ..., tn) ∈ Rn and a permutation σ ∈ Sn, tσ denotes (tσ(1), ..., tσ(n)).

• Call a multivariate function g : Rn → R permutation-invariant if for any permutation σ, it holds
g(t) = g(tσ) for all t ∈ Rn.

• For any function f : R → R, denote f⊗n : [Rn → R, t 7→ f(t1)...f(tn)]. Call f⊗n the associated
symmetric tensor function 1 – tensor because it is a product of single-variable functions, and
symmetric because all of those single-variable functions are the same.

• For any multivariate function g : Rn → R, denote Sym g :
[
Rn → R, t 7→ 1

n!
∑
σ∈Sn g(tσ)

]
.

We will sometimes write physicist-style f(t) to mean a function f : R → R, and similarly g(t)
instead of g : Rn → R.

Some function spaces Fix 1 ≤ p <∞ and q its conjugate exponent, i.e 1/p+ 1/q = 1.

• Let Lp(R) be the Banach space of Lp-integrable functions over R (with the usual Lebesgue
measure). Its dual space is Lq(R).

1Disclaimer: the term "symmetric tensor function" may not be consistent with standard terminology, I haven’t
checked.
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• Let C0(R) be the space of vanishing continuous functions over R. Its dual space is M(R), the
space of Radon measures. 2

• Similarly define Lp(Rn), Lq(Rn), C0(Rn) spaces of multivariate functions with n scalar variables.

• Denote LpSym(Rn), LqSym(Rn), C0 Sym(Rn) the respective (closed) subspaces consisting of permutation-
invariant functions.

Note that our shorthand Sym can be viewed as a projection operator from Lp(Rn) to LpSym(Rn),
and from C0(Rn) to C0 Sym(Rn).

2 The result and why it looks surprising to me
Proposition 1. Let 1 ≤ p <∞. The set {f⊗n(t); f ∈ Lp(R)} has its linear span dense in LpSym(Rn).

The set {f⊗n(t); f ∈ C0(R)} has its linear span dense in C0 Sym(Rn). 3

More explicitly: any g(t) ∈ C0 Sym(Rn) is arbitrarily-well uniformly approximated by finite sums of
the form

∑
i≤m fi(t1)...fi(tn) (m <∞, fi ∈ C0(R)).

This is not Weierstrass with symmetrization As an obvious corollary, the proposition holds
when R is replaced by a closed interval I ⊂ R. In this case the result looks like a straightforward
consequence of the Weierstrass approximation theorem, but it is not. Consider the following valid
reasoning:

Fix a continuous function g(t) over the compact In and let ε > 0. By the Weierstrass ap-
proximation theorem, there exists a polynomial P (t) such that ‖g − P‖ := supIn |g − P | ≤ ε,
and P (t) can be written as P (t) =

∑
α∈Nn aαtα (where there are only a finite number of

nonzero coefficients aα and the shorthand tα denotes tα1
1 ...tαnn ).

If in addition g(t) is permutation-invariant, then the lemma below shows that SymP (t) is
also an ε-approximation of g(t), and it can be written as

SymP (t) =
∑
α∈Nn

aα Sym tα =
∑
α∈Nn

∑
σ∈Sn

aα
n! t

ασ(1)
1 ...t

ασ(n)
n . (1)

This does not show that g(t) can be approximated by a finite combination of symmetric tensor
functions, as the reasoning may yield approximators such as t1t32 + t31t2 (if n = 2), which are not of the
required form.

Lemma 2 (The aforementioned lemma). For any function g(t) over Rn and any 1 ≤ p ≤ ∞, it holds:
‖Sym g‖Lp ≤ ‖g‖Lp .

For any permutation-invariant g(t) and any function h(t), if ‖g − h‖Lp ≤ ε, then ‖g − Sym h‖Lp ≤ ε.
2https://regularize.wordpress.com/2011/11/11/dual-spaces-of-continuous-functions/
3I’m pretty sure the same holds if C0 is replaced by Cb i.e if we consider bounded continuous functions, instead of

vanishing continuous.
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Proof. Let any function g(t) over Rn and any 1 ≤ p ≤ ∞. By definition of the Lp norm,

‖Sym g‖Lp =
∥∥∥∥∥ 1
n!
∑
σ∈Sn

g(tσ)
∥∥∥∥∥
Lp

≤ 1
n!
∑
σ∈Sn

‖g(tσ)‖Lp = ‖g‖Lp . (2)

Let any permutation-invariant function g(t) and any function h(t) such that ‖g − h‖Lp ≤ ε. Then

‖g − Sym h‖Lp = ‖Sym(g − h)‖Lp ≤ ‖g − h‖Lp ≤ ε. (3)

An example of surprise In fact the case of permutation-invariant polynomials over a compact set
is already surprising to me... In fact just the following example is already surprising to me:

Consider the function g(t) = t1 + ... + tn over [0, 1]n. According to the proposition, there
exist m < ∞ and fi(t) ∈ C([0, 1]) (i ≤ m) such that g(t) ≈

∑
i≤m fi(t1)...fi(tn), in the

sense of uniform approximation over [0, 1]n.

I wonder what these fi could look like. Since they are continuous over [0, 1], according to the Weier-
strass approximation theorem we may assume without loss of generality that each fi is polynomial.
Then, developing the product fi(t1)...fi(tn) would yield an a priori big polynomial, whereas directly
using Weierstrass with symmetrization can yield simply t1 + ...+ tn itself.

3 Brief proof of the result
In this section we prove the Lp/Lq (1 ≤ p <∞) part of the proposition; the C0/M part can be proved
by the same arguments, with minor modifications.

I assume the reader is familiar with the basics of functional analysis and duality in Banach spaces.
Recall the following density criterion, which is a consequence of the Hahn-Banach theorem (as are
many things):

Lemma 3. Let E be a Banach space and A a subset.

span(A) is dense in E ⇐⇒ {X ∈ E′; ∀a ∈ A, 〈a,X〉E = 0} = {0E′}. (4)

The set on the right is sometimes denoted A⊥ and called the annihilator of A. Note that
A⊥ = (span(A))⊥. In the case where E is a Euclidean space, A⊥ is just (up to isometry) the or-
thogonal complement of span(A).

The proposition will be proved by applying the above density criterion. To do so we will need
the following intuitively obvious lemma, characterizing the dual of LpSym(Rn). A formal and rather
uninteresting proof can be found at the end of this document.

Lemma 4. The dual of LpSym(Rn) is isometrically isomorphic to LqSym(Rn).

We can now prove the proposition. The main argument is extracted from (Boyd Chua Desoer 1984,
Theorem 2.5.2) in the context of Volterra series.
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Proof of proposition. To apply the density criterion to A = {f⊗n(t); f ∈ Lp(R)} and E = LpSym(Rn),
let h ∈ E′ ' LqSym(Rn) such that 〈f⊗n, h〉Lp = 0 for all f ∈ Lp(R). Let us show that h = 0, from
which the proposition will follow.

Denote Φh : Lp(R)→ R the n-homogeneous map

Φh[f ] =
〈
f⊗n, h

〉
Lp

=
∫
Rn
dt h(t1, ..., tn)f(t1)...f(tn) (5)

and Ψh : Lp(R)n → R the associated n-linear system

Ψh{f1, ..., fn} = 〈f1 ⊗ ...⊗ fn, h〉Lp =
∫
Rn
dt h(t1, ..., tn)f1(t1)...fn(tn). (6)

The n-linear system Ψh{·, ..., ·} is symmetric in its arguments, since h is permutation-invariant. So
Ψh is completely determined by the n-homogeneous map Φh[·] via the algebraic polarization identity 4

n!Ψh{f1, ..., fn} = ∂

∂α1...∂αn

∣∣∣∣
α=0

Φh

[
n∑
i=1

αifi

]
, (7)

and the right-hand-side is the differential of an identically zero map. Consequently,

∀f1, ..., fn ∈ Lp(R), Ψh{f1, ..., fn} = 0. (8)

Now evaluate this at f1(t) = 1t∈A1 , ..., fn(t) = 1t∈An for intervals Ai ⊂ R:

Ψh{f1, ..., fn} =
∫
Rn
dt h(t1, ..., tn)1t∈A1×...×An = 0. (9)

Since this holds for all Ai, and hyperrectangles generate the Borel σ-algebra, then h = 0, as claimed.

4 Is the result interesting/useful?
For the subjects that I’m currently leaning towards, the result presented in this document is actually
pretty useless, as it only talks about approximability per se. It doesn’t give any guarantees on the
nature nor the number of functions fi required to ε-approximate a given target function g.

However I still find the result technically interesting and surprising. I never heard about it before
but I’m certain it must be somewhere out there already – I would be glad to know where and in what
context.

A Proofs
Proof of lemma that LpSym(Rn)′ ' LqSym(Rn). View the shorthand Symp : g 7→ 1

n!
∑
σ g(tσ) as an op-

erator from Lp(Rn) to LpSym(Rn), and denote Sym∗p : LpSym(Rn)′ → Lp(Rn)′ ' Lq(Rn) its adjoint op-
erator, i.e such that

∀ν ∈ LpSym(Rn)′,∀g ∈ Lp(Rn),
〈
g,Sym∗p ν

〉
Lp

=
〈
Symp g, ν

〉
LpSym

. (10)

4See https://en.wikipedia.org/wiki/Polarization_of_an_algebraic_form.
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Since Symp is surjective, then Sym∗p is injective, and it is not hard to check that Sym∗p is isometric. It
remains to check that the image space of Sym∗p is LqSym(Rn).

Indeed: for any ν ∈ LpSym(Rn)′ and h = Sym∗p ν ∈ Lq(Rn),

∀g ∈ Lp(Rn), 〈g, h〉Lp =
〈
Symp g, ν

〉
Lp

=
〈
Symp Symp g, ν

〉
Lp

=
〈
Symp g, h

〉
Lp

(11)

since Sym ◦ Sym = Sym, and

∀g ∈ Lp(Rn),
〈
Symp g, h

〉
Lp

= 1
n!
∑
σ∈Sn

〈g(tσ), h(t)〉 = 1
n!
∑
σ∈Sn

〈g(t), h(tσ)〉 =
〈
g,Symq h

〉
Lp
. (12)

Thus h = Symq h (since they coincide as elements of Lp(Rn)′), so h is permutation-invariant. Hence
Im(Sym∗p) ⊂ L

q
Sym(Rn).

Conversely: for any h ∈ LqSym(Rn) ⊂ Lq(Rn) ' Lp(Rn)′, denote ν ∈ LpSym(Rn)′ its restriction to
LpSym(Rn). Then one can check that h = Sym∗p ν.
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